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Abstract—Bounds for heat transport in several classical problems of conduction and forced convection
heat transfer are developed. The conduction bounds are based on a variational formulation, in which
systematic enrichment and restriction of the space of candidate minimizing functions leads to lower and
upper bounds, respectively. It is shown that the addition of insulator ‘cuts’ results in a broadening of the
space and therefore underestimation of transport, whereas the addition of superconductor cuts leads to
contraction of the space and overestimation. Our results constitute formal proof of several theorems
proposed by Elrod (Trans. ASME J. Heat Transfer 65-70 (February 1974)). An upper bound for forced
convection heat transfer in turbulent plane Couette flow based on the method of horizontal averages and
power integrals is also presented. In particular, it is shown that for fixed (given) momentum transport, the
heat transfer rate from the wall can be bounded from above as a function of the Reynolds and Prandt!
numbers. This relationship between shear stress and heat flux serves as theoretical support for Reynolds’
momentum/heat transport analogy for turbulent non-separated flow.

INTRODUCTION

A LARGE number of physical phenomena can be
described by variational statements, in which the
desired solution is obtained as the extremum of an
appropriately defined functional [1, 2]. These vari-
ational formulations prove useful in the construction
of approximate or numerical solutions, as well as in
the subsequent theoretical analysis of the accuracy
and convergence of these approximations [3]. In
essence, the variational representation reduces the
differential statement to an integral form, which is
then much more amenable to estimation than the
original ‘pointwise’ description.

It has long been known that the problem of steady
heat conduction has a variational statement, in which
the solution of Poisson’s equation is replaced by mini-
mization of the Dirichlet functional [4]. The vari-
ational formulation is the basis of the finite element
method as applied to this class of problems {3]. How-
ever, outside of finite element discretizations, vari-
ational methods are used very little in conduction
heat transfer practice, perhaps due to the non-obvious
physical significance of the Dirichlet integral. In this
paper, we propose to show (or, more precisely, re-
invent) how simple physical considerations within the
framework of a variational formulation can lead to
practical yet rigorous estimation and bound tech-
niques. Our results constitute a proof of several upper
and lower bound theorems proposed by Elrod [5].

Unlike the problem of heat conduction, prediction
of forced convection heat transfer does not cor-
respond to minimization of a functional. As a result,
to make progress using integral methods for con-
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vective problems requires the construction of ‘arti-
ficial’ functionals the extrema of which can be used to
bound (but not predict) the desired quantities.
Although such techniques have been employed pre-
viously in natural convection studies {2], they have
not, to our knowledge, been used for forced convec-
tion. We present here an analysis of forced convection
heat transfer based on these ideas. The methods and
resulting bounds are much less trivial, and markedly
less general than their conduction counterparts. How-
ever, they nevertheless offer insight into the basic ques-
tion of the relationship between momentum and heat
transport.

In Part 1 of this paper we discuss and prove some
simple variational conduction bounds. Emphasis is
both on the formal proofs of lower and upper bounds,
and on the physical significance of the estimation tech-
niques. Having introduced the concept of bounds, we
turn in Part 2 to estimation of an upper bound for
forced convection heat transfer in turbulent plane
Couette flow. The relevance of these convective trans-
port estimates to classical momentum/heat transport
relations such as the Reynolds analogy [6] is discussed.

PART 1. CONDUCTION

Problem statement

We consider here the simple but common case of
steady (two-dimensional) conduction heat transfer
between two isothermal surfaces, as shown in Fig. 1.
The governing equations and associated boundary
conditions in non-dimensional form are

V=0
Vén=0

inD
on éD,

(1a)
(1b)
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A area of region B defined in the Appendix

A(x) cross-section of wedge in Fig. 4

B two-dimensional region defined in the
Appendix

B(y) ‘length’ for geometry of Fig. 5

D two-dimensional region defined in
Part 1

oD boundary of region D

2d distance between two parallel plates in
Part 2

F,f  dimensional and non-dimensional mean
momentum flux

h heat transfer coefficient

n non-dimensional heat transfer
coeflicient

I(v)  Dirichlet integral of function », defined
in equation (4b)

(v  modified Dirichlet integral defined in
equation (31b)

i,j,k unit vectors in the x-, y-, z-directions

k thermal conductivity

n,t unit vectors orthogonal and tangential
to boundaries

P.po,p general, mean, and fluctuation
pressure fields

NOMENCLATURE

u,v,w fluctuation velocity fields in the x-, y-, z-
directions

V.v  general and fluctuation vector velocity
fields

x,y,z Cartesian coordinates.

Greek symbols
o thermal diffusivity of the fluid
8 small parameter defined in the Appendix

®,0,,0 general, mean, and fluctuation
temperature fields

0 non-dimensional temperature field in
Part 1
i viscosity
v kinematic viscosity
P constant density of fluid.
QOther symbols
B space of functions defined in

equation (6)
A" space of functions defined in
equation (13b)
space of functions defined in
equation (17b)
F any space of functions
H

3?5

Pe Peclet number ! space of functions defined in
Pr Prandtl number equation (5)
Q.q dimensional and non-dimensional heat {+> integration over finite domain D (or
transfer rate D', D”)in Part 1
Re Reynolds number {*> average over entire infinite domain in
T dimensional temperature Part 2
AT temperature difference between v average over infinite horizontal plane for
isothermal boundaries any function v(x, y, z) in Part 2
gl mean velocity field v vector gradient operator.
A
0 = 1(0) ondD,(éDy) (1c) msum&é\d n
where 8 = (T—T,)/{T,—T,) is the non-dimensional a0,
temperature, D the physical domain, 6D, the adiabatic T
boundary (outward normal n), and 8D, D, the iso- ap, / o
thermal surfaces.
Of interest is determining the heat transfer rate T,/‘/

through the body, which is given by

Vi-nds = ——J‘ V8-nds (2)

a0,

9= Q/’kAT=J

an,

where Q is the dimensional heat transfer rate per unit
depth into the paper, AT = T, —T, the temperature
difference between the plates, and %k the (assumed
constant) thermal conductivity of the material. Equal-
ity of the two integrals in equation (2) follows by
integration of equation (1a) over the domain, and
application of Gauss’ theorem and boundary con-
ditions (1b).

insulated

F16. 1. General conduction problem to be considered. corre-
sponding to heat transfer between two isothermal surfaces.

To put equation (2) in more convenient form for
purposes of estimation, we multiply equation (1a) by
the solution, 8, and perform an integration by parts
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<Ov0) = OVO-nds—(V0)*>=0 (3)

oD ,UéD,
(where {*) represents integration over the domain D),

from which it follows by definition of ¢ in equation
(2) that

= I(0) (4a)
where I(v) is the Dirichlet integral given by
1) = {(Vv)*). (4b)

In addition to the differential statement given in
equation (1), a variational formulation of the heat
conduction problem can also be posed. To arrive at
the variational statement, we first define the ‘basic’
space of functions, # ', for which the Dirichlet inte-
gral defined in equation (4b) makes sense

#H'={v(x,y)|x,yeD,
Py <, ((Vo)*) <o} (5)

We next introduce a ‘subspace’ of ', #, which
includes only those functions from ' which satisfy
the essential boundary conditions on 6D, and D,

# = {v(x,y)|ve #'in D, v=1(0)ondD(0D,)}.
(6)

Note v e # need not satisfy the natural boundary con-
ditions on 0D, as these conditions will be taken care
of ‘automatically’ by the variational statement. We
also assume here that all the boundaries 8D are piece-
wise smooth.

Armed with the spaces described above, we can
now present the variational statement associated with
equation (1): find that function '(x,y) in # which
minimizes the value of the Dirichlet functional 7

I(0") = inf I(v) @)
re#

(for practical purposes ‘inf” can be read as ‘min’). It
can be shown that the differential, (1), and variational,
(7), formulations of the heat conduction problem are
closely related. Indeed, from equating to zero the first
variation of the functional 7(6"), it follows that for
sufficiently smooth data

O(x.y) = 0'(x, ). (®)

That is, the function 6’ in # which minimizes the
functional 7 is the solution to the differential equation
(1), 8. As regards the class of admissible ¢ in equation
(7), it is critical to note that the variational for-
mulation (7) requires of its candidates only square
integrability of first derivatives (i.e. the function must
be continuous, but its first derivative need not be)
and satisfaction of essentia/ boundary conditions. In
contrast, the differential statement (1) makes sense
only for functions for which we assume existence
(square integrability) of the second derivative and
satisfaction of both essential and natural boundary
conditions.
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From equations (4), (7) and (8) we now obtain the
following expression for the heat transfer rate:

g = inf {(Vv)*) )
ve#

which will serve as the basis for the constructive
bounds presented below.

Lower and upper bounds
From equation (9) it is now simple to see how lower
and upper bounds can be constructed. If we define

g7 = inf {(V0)*)
veF

(10)

for some space of functions %, it then follows that

qgis < 4 S ggus (lla)

for

BB B < BB, (11b)

Enrichment of the space (£ < #™®) leads to lower
bounds (LB), while restriction of the space
(#"® = #) leads to upper bounds (UB). This result
is, of course, as old as the variational formulation
of the conduction problem. Of interest here are two
‘spaces’ which have a simple physical interpretation
and to which expressions (11) then add proof.

In what follows, the functional spaces introduced
will be defined in terms of ‘cuts’ inserted into the
original domain, D. Although these cuts are important
in that they define the continuity requirements on
admissible functions, they do not actually affect the
domain of integration in equation (10), as they are
of measure zero. We therefore do not distinguish
between various forms of equation (10) defined on
domains differing only by cuts, and keep the same
symbol for the Dirichlet integral over all such regions.

Lower bounds-——insulators

Consider the new problem in which we take the
original problem defined in Fig. 1, and insert anywhere
in the domain a smooth insulator cut, as shown in
Fig. 2. The problem in differential form is then

V=0 in D’ (12a)
Vé-n=0 on dD}, (12b)
6 =1(0) ondD{(dDy) (12¢)
Vé-n=20 on dDj (12d)

where D’ is identical to the original domain D save
for a ‘cut’ corresponding to the insulator.

The expression for ¢ (even for modified problem
(12)) is again given by the Dirichlet integral over the
domain D’, as the additional boundary terms that
would be generated in equation (3) all vanish due to
the zero flux conditions (12d). In variational form, the
heat transfer rate is thus given by
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F1G. 2. Definition of lower bound problem corresponding to
introduction of insulator cuts.

g'= inf ((Vo)*)

ve B!

(13a)

where %7 is the space of functions defined by

B'={v|lve#'inD’; v=1(0)ondD,(0D,)}.
(13b)

Although equations (13) and (9) may appear iden-
tical, this is not the case due to the fact that D and D’
are not the same. In particular, a function in %’ may
be discontinuous across dD; in D’, whereas a function
in # may not be discontinuous across the cor-
responding internal line in D. This implies that
B < #, and that therefore from expression (11)

q7<q (14)

The conclusion is thus that in all circumstances
addition of (any number of) insulation cuts will lower
the heat transfer rate through the body—as is expected
on physical grounds. This general result was first
stated and applied by Elrod [5], however, the dem-
onstration of inequality (14) given in ref. [1] involves
the introduction of artificial internal heat transfer
coefficients, and is both significantly more com-
plicated and less rigorous than the simple variational
arguments given here.

Although it is difficult to a priori estimate the mag-
nitude of the underestimation for arbitrary cuts, it
is simple to understand the origin of the error. In
particular, it is clear that if the insulator cut is chosen
so as to be coincident with a flux line of the exact
solution (e.g. parallel to V@), the insulator solution
will be exact, ¢’ = g. It therefore follows that the closer
the insulator cut approximates a flux line, the better
(higher) the lower bound will be.

Upper bounds—superconductors

Consider now another new problem in which we
take the original problem of Fig. 1 and insert any-
where in the domain a superconductor cut, as shown
in Fig. 3. The problem in differential form is then
given by

vig=0 inD"” (15a)
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Von=0 ondD;’ (15b)
0 =1(0) ondD/(éDgy") (15¢)
Vot=0 on dD¢ (15d.1)
J Vé:nds = —J Vo:.nds (15d.2)
oDy, oDy

where D%, and dDY_ are the two sides of the super-
conductor cut, with normal and tangential vectors
denoted n and t, respectively. It should be noted that
although equations (15d) are ‘non-standard’ bound-
ary conditions for Poisson’s equation (i.e. not Dirich-
let, Neumann, or mixed), they can be shown to result
in a well-posed elliptic problem [7]. Physically, super-
conductor boundary conditions (15d) correspond to
the fact that the temperature along a superconductor
is constant but unknown (15d.1), with the inde-
terminacy being fixed by condition (15d.2) which rep-
resents an energy balance on an infinitesimal control
volume surrounding the cut.

The expression for the heat transfer rate, ¢, for the
superconductor problem is the same as that given
previously in equation (10). To show this, we start
again with integration by parts

OV20) = g + j 0V nds—((V0)*> =0 (16)

where 8D{ refers to integration over both sides of the
superconductor cut. As the surface integral over 4Dy
vanishes due to the combination of equations (15d.1)
and (15d.2), the heat transfer rate in variational form
can be written as

g’ = inf ((V)*) (17a)
ve#s
where 47 is the space of functions defined by
#B° = {v|lve #'inD";
v =1(0) on 6D,(8D,), Vv-t=00ndDs}. (17b)

Note equations (15d) are mixed essential/natural

aD,

insulated

F1G. 3. Definition of upper bound problem corresponding
to introduction of superconductor cuts.
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insulated

i

Fic. 4. Wedge geometry used to illustrate the one-dimen-
sional estimation techniques for upper bounds.

boundary conditions, in that equation (15d.1) is
essential whereas equation (15d.2) is natural.

As expression (17a) is identical in form to that given
in equation (10), our general arguments as to lower
and upper bounds given in expressions (11) apply. In
particular, inspection of equation (17b) indicates that
the two spaces # and #° are the same except for
the restrictions they place on v along éD§; in #&°
functions v must be continuous and constant, whereas
in # functions v need only be continuous. Thus, #
is ‘richer’ than #° (%5 < #), from which it then
follows that

g<q°. (18)

The addition of (any number of) superconductor
cuts anywhere in the domain increases the heat trans-
fer rate—as is expected on physical grounds [5]. Asin
the case of insulators where the error in estimation is
‘proportional’ to the deviation in the insulator cut
from a flux line of the exact solution, so in the case of
superconductors the error is related to the deviation
in the superconductor cut from an isotherm of the
exact solution.

Our final result concerning insulators and super-
conductors, corresponding to Elrod’s ‘Theorem II’
[5], can thus be written as

9<q<q’ (19

allowing for estimation of both upper and lower
bounds for conduction heat transfer.

One-dimensional estimates

Upper bounds. We briefly describe here some com-
monly-used one-dimensional estimates for heat trans-
fer that can be interpreted in terms of the proofs given
above. Consider the problem of conduction in the
wedge shown in Fig. 4, governed by the differential
and variational forms given in equations (1) and (9),
respectively. If we make the assumption of one-dimen-
sionality, 8 = 6(x), and require that the heat transfer
rate be the same at any cross-section (x = constant),
we arrive at the usual equation for (approximate) one-
dimensional heat transfer
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d/dx[A(x) dO(x)/dx] =0, 60)=1, 6(1)=0

(20a)

where A(x) is the area of the wedge per unit depth,
A(x) = 1+ x. From equation (20a) we can readily find
the solution,

0(x) =J I/A(é)df/J0 1/4(5)d¢  (20b)

and corresponding heat transfer rate ¢'° (= —A(x)

df/dx)
q'° = 1/J; 1Ay de.

It is then straightforward to show that the vari-
ational statement associated with equation {20} is
given by

(20c)

1D

g'’ = inf

re & w

£ (do/d&)?4(Eyde (2la)

where % '° is the space of one-dimensional functions
v(x) that satisfy the essential boundary conditions,
v(0) = 1, v(1) = 0. Using the fact that v = v(x) only,
equation (21a) can be rewritten as

inf ((Vo)?).

ve @i

1D

gP = (21b)
Now, since #'° c 4, it follows from the arguments
of the previous section, expressions (10) and (11), that
q'P is an upper bound for the actual heat transfer rate

g<4q'®. (22)

This reflects the fact that the one-dimensional assump-
tion is equivalent to replacing all resistances in the y-
direction with superconductors. Note the one-dimen-
sional estimations are most useful (i.e. accurate) when
the insulated boundaries have small slope, as in this
situation the isotherms are, in fact, close to vertical
lines.

Lastly, we show how to obtain a ‘simplest’ upper
bound to one-dimensional (and thus, from inequality
(22), two-dimensional) conduction heat transfer. We
consider the effect of area averaging, corresponding
to replacement of the original domain with a constant
cross-section body possessing the same area and
length as the original domain. This problem is trivial
to solve, giving

g™ =j; A(g)d¢. 23)

In order to show that ¢'™ is larger than ¢'°, we make

use of the following Schwarz inequality for a function

fx)>0

(e (e[ o)

(24a)
Identifying f(x) as 4{x), we find that
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FiG. 5. Geometry used to illustrate the one-dimensional
estimation techniques for lower bounds.

q'>*/q'® =£ 1/A(&)d¢ L AE)dE= 1 (24b)

which gives the following inequality :

g<q”<g”" 2%

The effect of area averaging is to provide an upper
bound that is greater yet than the one-dimensional
approximation. Intuitively, ¢'®* > ¢'" due to the fact
that the decrease in resistance at the small-area bottle-
necks is proportionately greater than the increase in
resistance in the large-area regions of the wedge. If we
evaluate our estimates in inequality (25) for the wedge
shown in Fig. 4, we find that ¢'°* = 3/2 = 1.50 and
q'®=1/In2 = 1.44. The ‘exact’, two-dimensional
solution is found (numerically) to be g = 1.38 [8].

Lower bounds. By analogy with the previous section,
we demonstrate here the use of one-dimensional esti-
mates to arrive at lower bounds for heat transfer.
Consider the two-dimensional conduction problem
given in Fig. 5, governed by the differential and vari-
ational forms given in equations (1) and (9), respec-
tively. If we now neglect the heat flux in the y-direction
at any point inside D, we arrive at another form of
one-dimensional equation in x, where y now appears
as a parameter

d2e

dx?
with the solution 8(x) and heat transfer ¢'® obtained
as

=0, 0l,=0=1, 0|x=B(y) =0 (262)

6 = 1—x/B(y)

.d_f‘_dé
= ), Bley

The variational formulation associated with equa-
tions (26) can be written as

I {"B(») 2
g4 = infj J I:M:' dxdy @n
veB' Jo Jo ox

where B is the space of functions of two variables
v(x,y) which are continuous and differentiable with
respect to the x variable, satisfy boundary conditions
from equations (26a), but might be discontinuous in

(26b)

(26¢)
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the y-direction. The equivalence of equation (27) to
equations (26) can be shown using standard vari-
ational techniques.

In order to arrive at the required lower bounds we
define vy(x, ) as the exact solution of the two-dimen-
sional problem (1). Then, recognizing that vy(x, y)
€ B' and using equation (27) we obtain

1 B(y)
g" < j f (Ovo/0x)*dxdy
0 Jo

1 ("B(y)
< J J [(Pv/0x)’ +(dve/0y)) dx dy = q. (28)
0 Jo

The lower bound reflects the fact that this form of
one-dimensional estimate is equivalent to replacing all
resistances in the x-direction with insulators.

Now again, as in the previous section, we consider
the effect of area averaging in order to provide a
‘simplest’ lower bound for ¢'¢ and thus for g. We
replace now the original domain given on Fig. 5 by
the region with constant length

B= L B(¢)d¢

possessing the same area and height as the original
domain. The heat conduction problem in the ‘aver-
aged” domain is trivially solved

g’ = I/L B(&) de.

Identifying f(x) from equation (24a) with B(y) and
using equation (26¢) we arrive at

(29a)

qld.B < qld < q (29b)
Intuitively, we can understand inequality (29b) by
noting that the thermal resistance is directly pro-
portional to B(y), and that the increases in B(y)
(resistance) for B(y) < B are proportionately greater
than the decreases in B(y) (resistance) for B(y) > B,
thus giving ¢'*# < ¢'9. As an example we choose the
geometry of Fig. 5, B(y) = 1—|y—0.5]|, 0<y< 1.
for which we obtain ¢'¢¥=4/3=1333 <g" =
2In2 = 1.386 < ¢ = 1.565 [8].

Use of one-dimensional estimates of the kind
described here is quite widespread. However, it is gen-
erally not stated whether such estimates constitute
lower or upper bounds, or what the hierarchy is in
terms of degree of approximation. The simple proofs
given here should help in this regard.

Extension to convective boundary conditions

We have considered so far the case with two iso-
thermal boundaries dD, and dD,. However, our
results readily extend to the case where these bound-
aries are exposed to the ambient temperatures (7, and
T,, respectively) through a convective heat transfer
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coefficient, A(x) > 0. Our problem statement (1) then
becomes

Vi =0 in D (30a)
VO-n=10 on oD, (30b)
Vo n= —h(@—-1) ondD,
Vo-n=—h0o on dD, (30c)

where /' is a non-dimensional heat transfer coefficient
(i.e. Biot number).

Following a procedure analogous to that used to
arrive at equation (9), it can be shown that the non-
dimensional heat transfer rate associated with equa-
tions (30) is given by

g = inf I(v) (la)
l’Eéﬂ
where Tis the ‘modified’ Dirichlet functional
Iv) = Vo) + J H()@w—-1)ds + J K (s)vids
oD, D,
(31b)

and 4 = #', as all boundary conditions in equa-
tions (30) are natural. The fact that we can once again
express the heat transfer rate as the minimum of a
functional implies that the (variational) results for the
constant temperature case directly extend to the case
of convective boundary conditions treated in ref. [5].

PART 2. AN UPPER BOUND FOR FORCED
CONVECTION HEAT TRANSFER IN
‘TURBULENT’ PLANE COUETTE FLOW

We are concerned here with an upper bound for
heat transport by forced convection in ‘turbulent’
plane Couette flow. Closely related problems have
been considered previously by Howard [2, 9] and
Busse [10, 11]. In particular, Howard obtained an
upper bound for heat transport by natural convection
between two infinite horizontal plates for a given Ray-
leigh number [9], and for the dissipation function for
plane Couette flow for a given Reynolds number [2].
Busse [10, 11] subsequently improved on some of
Howard’s results using the technique of multiple
boundary layers.

As is well known, the variational principle for con-
duction heat transfer utilized in Part 1 of this paper is
no longer relevant for the convection problem, and
thus another method must be used to obtain the
required estimations of heat transfer. Howard’s
approach entails the construction of exact integral
expressions (‘power constraints’) related to global
properties of the flow. One then looks for a supremum
of the quantities of interest (e.g. heat transport) sub-
ject to these energy integral constraints, the boundary
conditions of the problem, and perhaps incom-
pressibility. Integral inequalities serve as first esti-
mates for upper bounds, however, more refined results
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F1G. 6. Geometry definition for forced convection in plane
Couette flow between infinite parallel plates.

can be obtained by direct investigation of the appro-
priate Euler equations.

This paper can be considered as an extension of
Howard’s ideas to the case of forced convection. In
particular, heat transport in the plane Couette
geometry is estimated in terms of the Peclet number
and the (given) viscous dissipation (e.g. momentum
transport) of the flow. It is clear that the momentum
equations are independent of the heat equation for
the forced convection case, and thus the momentum
transport can be either independently estimated, or
taken from experimental data. We use here only
simple integral inequalities (almost entirely taken
from Howard’s papers), with no attempt made to
obtain the extremizing fields. It is therefore clear
that the result presented is not optimal, and can be im-
proved to provide closer agreement with experiment.

The results obtained in this part of the paper can
also be related to Reynolds’ conjecture [12] con-
cerning the similarity between momentum and heat
transfer, now known as the Reynolds analogy [6]. The
simplicity and practical ramifications of this idea are
extremely intriguing, however, to date, it has been
rigorously demonstrated only for the flat plate lami-
nar boundary layer. We show here that the heat flux
is, indeed, bounded by the momentum flux for a non-
trivial class of flows, an indication that the Reynolds
analogy can perhaps be systematically extended to
more complicated situations.

Problem statement

We consider incompressible flow and heat transport
between two infinite isothermal rigid plates separated
by a distance 2d, as shown in Fig. 6. The plates are
moving in opposite directions with velocities F V,,
with the top plate at temperature T = T, and the
bottom plate at temperature 7 = T, +2AT. Using d
for the length scaling, d/V, for time, V, for velocity,
pV} for pressure, and AT for temperature, the non-
dimensional equations for forced convection are given
by

OV/0t+V-VV = —VP+1/ReV?V;

V:V=0; V=TFionz=+1 (32a)
00/0t+V-VO = 1/PeV?’®; O= Flonz= +1
(32b)

where Re = Vd/v is the Reynolds number, Pe =
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Re Pr the Peclet number, Pr = v/ the Prandtl number,
and © = [(T—T,)/AT] —1 the non-dimensional tem-
perature. Here v is the kinematic viscosity and o« the
thermal diffusivity of the fluid. It should be noted that
we have neglected the (forcing) viscous dissipation
term in thermal energy equation (32b), due to its
minimal influence on the temperature field for the
parameter range of interest here. However, the viscous
dissipation (i.e. wall shear stress) will nevertheless
play a critical role in determining the heat transfer, in
that by specifying a fixed dissipation we impose a
constraint on the possible velocity fields that enter into
the V+ V@ convective term of the energy equation.

Following Howard [2, 9], we assume that for any
function V, P, ® averages over the entire domain
(defined here as - )) exist, and are independent of
time. Using this assumption, the energy integral of
equation (32b) (multiplication by @ followed by aver-
aging over the domain) results in effectively the same
expression for wall heat transfer as for the conduction
problem studied in Part 1. However, although the
heat transfer rate for the conduction and convection
problems has formally the same expression in terms
of the Dirichlet integral, § = kAT{(V®)?)/d (here O
is the average heat flux at the wall), the variational
principle utilized in Part 1 is no longer relevant, as the
convection heat transfer problem has no ‘extremum’
properties. Some new approach must therefore be
found in searching for estimations of Q.

In order to define this approach we utilize the tech-
nique of space averaging. We assume that for any
function V, P, ® horizontal averages (over planes
z = constant) exist, and are independent of time (see
the Appendix). All quantities are then split into ‘mean’
and ‘fluctuating’ parts. The horizontal averages will
be denoted by an overbar, and represent the mean

values of the given quantities
V =uy(2)i+v; @ =0y(z)+6 (33a)

(33b)

P =po(2)+p;
v=p=0=0.

Averaging the momentum and temperature equations
we obtain the following expressions for the mean
fields :

wo(2) = —:+ReU' uwdc—(1+z)<uw>] (34a)

Bo(z) = —z+ Pe U Wdc—(l+z)<8w>} (34b)

where averaging over the entire domain can be defined
in terms of horizontal averages as

= 1/2Lf_d2-

Now defining F as the mean momentum flux (i.e.
shear stress) and @ as the mean heat flux, we obtain
from equations (34)
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f=FjuV,/d) = —duy/dz|._ ., = 1+ Re{uw)
(352)

q = Q/(kAT|d) = —dB,/dz|,_ ., = 1+ Pe{Ow
(35b)

where u is the viscosity and k the thermal conductivity
of the fluid. The parameter f defined in equation
(35a) represents both the momentum flux (wall shear
stress) and the viscous dissipation, while g represents
the heat flux (or Nusselt number).

Multiplying the perturbation momentum equation
by v and the perturbation heat equation by 6 and
integrating over the domain, the two ‘energy’ integrals
are obtained

{uw) = 1/Re {(V¥)*> + Re ((W—(uw))z) (36a)
{Bw) = 1/Pe ((V0)2>+Pe<(%—<0w'))2> (36b)

where we have used homogeneity and the mean-field
expressions given by equations (34). Equations (34)—
(36) appear exactly as in the earlier work by Howard
[2,9].

In this paper we are looking for relatively simple
estimations for heat transfer. For the conduction
problem described in Part 1 we could utilize a vari-
ational principle to reduce the problem to tractable
form. Unfortunately, for turbulent convection no
variational statement is known to exist. However, we
can maintain the integral nature of the analysis of Part
1 by using power integrals (36) to construct ‘artificial’
functionals that can then be used to bound g (although
the actual ¢ will not correspond to this extremum).

We are therefore searching here for an upper bound
for g, the heat flux, in terms of the Reynolds and
Prandtl numbers for a given value of momentum flux,
f. The problem can be stated as follows.

Find an upper bound for ¢g—1 = Pe (fw) when
the functions 8, v satisfy the following constraints:
f =v =0 on the boundaries; the power integrals
given by equations (36); f—1 = Re{uw); V:v=0.
Here f can be considered as given.

The form of equations (34a) and (34b), (35a) and
(35b), and (36a) and (36b) suggests a strong similarity
in the heat and momentum transport mechanisms.
Thus we expect that the heat flux can be bounded in
terms of the momentum flux, which corresponds to a
(somewhat weak) statement of the classical Reynolds
analogy.

An upper bound for heat transport

In this section, we obtain an upper bound for (tur-
bulent) heat transport. First, it is well known that if
the value of the Reynolds number is sufficiently small,
the unique stationary solution of equations (32) cor-
responds to linear plane Couette flow (f = 1), with
purely conducting heat transfer (¢ = 1, a lower bound
for convection heat transfer for any value of the Rey-
nolds number). However, with an increase of the
Reynolds number, the linear velocity profile becomes
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unstable, and as from equations (36) we see that both
{uw) and {fw) are positive, f and g must be greater
than unity for any new kind of stationary flow.

To determine how large (Aw) (and hence, ¢g) can
be, we use equation {36b) to rewrite equation (35b)
as a homogeneous functional

12 1= 1/Pe{(VO)*)[{Ow)
(1 =0w/COw)?
and search for a bound of this quantity. We see that
the functional is homogeneous, and thus an increase
in the ‘amplitudes’ of the functions (6, w) does not
endanger the possibility of an upper bound for 4.
Functional (37) cannot be bounded from above only
if the denominator can become arbitrarily small.
From the Schwarz inequality ({ /> < {f?)), and the
boundary conditions of the flow, we easily obtain that
the denominator equals zero only for the trivial case
fw =0 (ie. g =1). However, if fw is a constant
almost everywhere and goes to zero only near the
walls (which is consistent with the ‘real’ boundary
layer structure), the value of the denominator will
become quite small. Tt remains to be shown that the
denominator can in fact be bounded from below so
that ¢ is bounded from above. In essence, this
addresses the question of whether by fixing the dis-
sipation we sufficiently restrict the range of excited
scales that enter into the thermal transport process.
Slightly reformulating Howard’s estimations for
terms similar to that appearing in the denominator of
equation (37), we obtain

CA=0w/<Ow))*> = 1/6<Ow>/[{(V8)* > (VW) D] /2.
(38)

37

A complete derivation of this inequality is given in the
Appendix. Now, using equations (37) and (38) we
obtain

V> |2
g—1 < 6(1—x/Pe)/x [TL)] (39)

where x = {(V0)*>/<0w). For any x, (1—x/Pe)\/x
< 2(Pe/27)'2, and thus

2 1/2
-l < |:16Pez (V) >Re<uw>] @)

3 Reluw) Pe{Ow)

From equation (36a) we have that {(Vv)?) <
Re {uw), and thus, using equations (35), we obtain

g—1<4Pe/(f=D/J/Bg~1))  (@la)

or

g—1<(16/3)'2 Pe?? (f—1)"3 (41b)

which is the required bound for ¢ in terms of Pe and f.

The value of f represents the non-dimensional
momentum flux through the boundaries, and thus the
bound given in equations (41) can be considered as
theoretical support to Reynolds’ proposed analogy
between heat and momentum transfer. Although
there is not, to our knowledge, any experimental data
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for heat transport in turbulent Couette flow, com-
parison of equation (41b) with heuristic models [13]
indicates that equation (41b) probably overestimates
the heat transfer by several orders of magnitude. Fur-
thermore, the functional dependence of g on f is not
that expected from Reynolds’ analogy. These dis-
crepancies may be due to the integral estimates
inherent in equation (41b) (i.e. equations (38)—(40)),
or the fact that the low-order moments given in equa-
tion (36b) do not sufficiently restrict the class of
admissible functions. The merit of bound (41b) is
clearly not in its predictive value, but rather in the
support it lends to the concept that the mechanisms
of momentum and heat transport in turbulent flow
are intimately linked.
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APPENDIX

A complete derivation of inequality (38) is presented here.
Although these derivations are almost entirely taken from
the work of Howard {2, 9], we believe that it is worthwhile
to summarize them here because of their importance in
understanding our final result.

First, we give the formal definition of horizontal aver-
aging. Define in the horizontal plane x, y a region B with area
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Azde
B

(e.g. if Bis defined by |x] < a.|y| < b, then A = 4ab). Fora
given function F(x, v, -) we consider the following limit:

F(z) = Ll{lérr)l [%L F(x,5.2) dBj|.

By definition, if the limit on the right-hand side exists and
does not depend on the way B goes to infinity, then this limit
(depending on z only) represents the horizontal average of
the function F(x, y, z).

Consider now a function f(z) continuous on the interval
(—1,1) with piecewise continuous derivative f.. Then, if

f(+£1)y=0andif
1
[ e
-1

[ <21-92>

(A1)

exists, then

and also
i) <200+,

To show this, we use the Schwarz inequality

[l = Ujlf;(z)dc]

< jdgf FHOE <2042

1 H
flo? = [j A0 dQ}

<‘[ dCJj FAOAE <20 -2)Kf1). (A2)

Now, for any function u(x,y,z) which satisfies the con-
dition u(x, y, +1) = 0, we obtain

S

1,
;‘“;J a8
< 2(l—z5) 1iml L [u(x.3.2).)*dzdB
= Vhen 4 |52 ,,”"}‘” -

=2(1-2)< )7y € 2(1—2)(Vw)?).  (A3)

We can obtain a similar result integrating from the other
wall, giving

W< 2(1+2(V)™y W’ <20 —2){(Vi)?D

good for zclose to 1° (A4

good for zclose to — 1~

Then, for 6 and w representing the quantities defined in Part
2 of this paper, we use the Schwarz inequality and the above

{ < 8 { | ‘
lim OwdB = lim Ow|dB

1 Caf
S[;E ZLU dB:||:;1=rrclchu dB]

=07 w? <41 —2)2{(VO)* >{(Vw)*).

0wl =

(A3)
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Expanding the gradient to include all the velocity com-
ponents, we find that

10w] < 2(1 —2)[K(V8)* (VW) ]2, (A6)

From equation (36b) we see that {(fw) is positive, and

thus we can rewrite the last inequality as

[0w] < (1—2)<Bwp/(5 (A7)

where

_ <0W>2 1/2 L N 2
o= [<(v0>2><<Vv)2>} S Jra” yros Y

This last inequality is borrowed from the Benard problem
[14], where it is proven that equation (A8) holds for any @
and v satisfying # = v = 0 on the boundaries and Vv = 0.
For the case of natural convection Ra has the meaning of the
critical Rayleigh number, but in our case of forced convection
this value can be considered as simply the minimum eigen-
value of an appropriately-defined eigenproblem. For the fol-
lowing derivation it is only important that & be less than
unity.
We can thus obtain

[6w] < (14+2)(Bw>jé;  [Bw] < (1—2){0wD/S
L—[8w|/<Ow) > 1 —(1+2)/5 1—|0wl/(Bw) > 1 —(1-2)/
good for z close to 1

(A9)

For the intervals (—1, —1+3J) and (14, 1) we see that
both sides of inequalities (A9) are positive, and thus

good for z close to —1

o
forze(—1,—1498)

[1 (B /<On]? > [1 - ﬂ}

[1—[Bwl/<Ow)]* > [1 —%]

forze(1-4,1)
On the basis of this result we then readily derive (recall 6 < 1)

(A10)

- 1" - )
1 —0w/<Bw))*) = EJ‘,I (1—8w/<{Bw))*dz

1
>3 f = w1/<O)" oz

“1té
> %J‘ (1 Bw]/<Ow)? dz

-1

+ %f (1 — (B <Ow))* dz
1-8

[ {1+ 14z} 1" 1—z\* 8
2§Jil (l_T> dz+§J\|ﬂs(I“ 5 )dz—g.
(A1D)

Substituting expressions (A8) in expressions (All) we
eventually obtain

{1 —Bw/BwY)? ) = 1/6<OwH/[{(VB)? >{(V¥)* )]
(A12

which is inequality (38) appearing in Part 2 of this paper. It
should be noted that for a turbulent flow we expect the
estimate (A12) of {(1—0w/{Bw))*)> to be relatively sharp.
as the neglected portion of the integral in expression (Al1)
corresponds to the well-mixed ‘core’ in which fw ~ (fw).
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LIMITES ENTRE LA CONDUCTION THERMIQUE ET LA CONVECTION FORCEE

Résumé—On considére les frontiéres de transfert de chaleur dans quelques problémes classiques de con-
duction et de convection forcée de la chaleur. Les limites de conduction sont basées sur une formulation
variationnelle dans laquelle un enrichissement ou une restriction de I'espace des fonctions & minimiser
conduit a une frontiére inférieure ou supérieure. On montre que 'addition de “"coupes” isolantes crée un
élargissement de I'espace et par suite d'une sous-estimation du transport, tandis que "addition de coupes
supraconductrices conduit d une contraction de 'espace et a une surestimation. Ces résultats constituent
une preuve formelle de quelques théorémes proposés par Elrod (Trans. ASME J. Heat Transfer 65-70
(1974)). On présente aussi une limite supérieure de la convection forcée dans I'écoulement turbulent de
Couette & partir de la méthode des moyennes horizontales et des intégrales puissance. En particulier, on
montre que pour un transfert de quantité de mouvement donné, le flux thermique 4 la paroi peut étre limité
en dessous par une fonction des nombres de Reynolds et de Prandtl. Cette relation entre la tension de
frottement et le flux de chaleur sert de support théorique a 'analogie de Reynolds entre les transports de
quantité de mouvement et de chaleur pour les écoulements turbulents sans séparation.

GRENZEN FUR DEN WARMETRANSPORT DURCH LEITUNG UND ERZWUNGENE
KONVEKTION

Zusammenfassung—Es werden Grenzen fiir den Wérmetransport bei verschiedenen klassischen Problemen
der Wirmeleitung und der erzwungenen Konvektion entwickelt. Die Grenzen der Wiarmeleitung beruhen
auf einem Variations-Verfahren, bei welchem eine systematische Erweiterung und Einschrinkung des
Raumes der Minimierungsfunktionen zu unteren und oberen Grenzen fiihrt. Es wird gezeigt, dafl das
Hinzufiigen einer Isolator-Scheibe zu einer Erweiterung des Raumes fihrt, wodurch der Transport als zu
klein berechnet wird. Gerade umgekehrt ist die Wirkung beim Hinzufligen eines Supraleiters. Unsere Ergeb-
nisse begriinden einen formalen Beweis der verschiedenen Theoreme, die von Elrod vorgestellt worden
sind. Eine obere Grenze fiir den Wirmetransport durch erzwungene Konvektion in einer turbulenten
ebenen Couette-Stromung wird vorgestellt. Im einzelnen wird gezeigt, daB fiir einen festen vorgegebenen
Impulstransport der Wirmetransport von der Platte als eine Funktion der Reynolds- und Prandil-
Zahlen nach oben abgegrenzt werden kann. Diese Bezichung zwischen der Schubspannung und der
Wirmestromdichte dient als theoretische Unterstiitzung der Reynolds-Analogie fiir turbulente, nicht
abgelbste Stromung.

TPAHWLIBI MEXAY KOHAVKTHUBHbLIM H BHIHY XXJEHHOKOHBEKTHUBHBIM
TEILJICOBMEHOM

Asvotaums—OupeeeHsl TPaHHUbI cBA3ell MEpeHOCAa TEILIa B PAa3NIMYHBIX KJACCHYECKHMX 3aJavax KOH-
IYKTHBHOTO M BHIHYXIEHHOKOHBEKTHBHOTO TeriooOMeHa. JIns TenyionpoBoJHOCTH CBA3IH OCHOBAHBI Ha
BapHAILMOHHOMN MOCTaHOBKE, ¢ CHCTEMAaTHYECKOE PACIIHPEHAE H OrpaHHYeHHE IPOCTPAHCTRA BEJIMYMH,
NepexoMAMX B MHHHMH3NpYIolye (YHKURH, NPHBOOMT K HIDKHAM M BEPXHHM CBS3SM, COOTBETCT-
BenHo. [Tokasano, uTo Ao0aBiIcHAE REMPOBOAAIIMX ‘OTPE3KOB’ HaeT PACHIMPEHHE IPOCTPAHCTBA H, COOT~
BETCTBEHHO, 3AHKEHHBIE JAHHBIE IO IEPEHOCY, B TO BpeMs Kak RoGaB/icHHe CBEPXIIPOBOARIINX OTPE3KOB
NPUBOAMT K CXATHIC NPOCTPAHCTBA M 3aBbIICHHLIM pe3ysbTataMm. Hawm nanbie GopMaibHO BBITE-
KAIOT M3 HECKOJBLKNX TeopeMm Juepona (Trans. ASME J. Heat Transfer 65-70 (February 1974)). ITony-
YeHa BEpXHA4 CBA3b [ BHIHYXICHHOKOHBEKTHBHOTO TEILUIOMEPEHOCA B TYPOYJICGHTHOM MJIOCKOM
TeveHun KysTTa, OCHOBAHHOM HA METOME FOPH3OHTANBHBIX YCPEAHEHHH H HHTETPaJioB 9Hepruu. B sacr-
HOCTH, MOKA3aHO, YTO AN 33JaHHOTO MEepeHOoca MMIYIbCa WHTEHCHBHOCTB TEIUIONEPEHOCA OT CTEHKH
MOXeT OblTh OrpaHHueHa CBepXy Kaxk ¢yuxuus uucen Peiinonsnaca u Tlpanaras. 310 cooTHOwEHHNE
MEeXIY KacaTe/IbHbIM HANDAXKCHHECM H TEIUTOBBIM NOTOKOM CIIYXKHT TEODETHYECKHM HEATBEPKICHHEM
pefiHONBLACOBCKOH AHAJTIOTHH NePEeHOCa HMITYIbCa,/Tensa And TypOyIeHTHOrO HEOTOPBABILErOCK NOTOKA.
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